

Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

A facile procedure for synthesis of 3-[2-(*N*,*N*-dialkylamino)ethyl]-3fluorooxindoles by direct fluorination of *N*,*N*-dialkyltryptamines

Takayuki Seki, Tomoya Fujiwara*, Yoshio Takeuchi

Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan

ARTICLE INFO

Article history: Received 13 December 2010 Accepted 25 December 2010

Fluorination Oxindole N,N-Dialkyltryptamine SelectfluorTM Lewis acid

1. Introduction

Fluorine-containing drugs and drug candidates have been synthesized in pharmaceutical research over the last 20 years [1] because introduction of fluorine atoms into bioactive compounds often induces dramatic changes in their chemical, physical, and pharmacological properties [2]. The 3-fluorooxindole compounds 1 have received much attention as synthetic targets for development of novel medicinal agents (Fig. 1). Owing to the steric and electronic similarities of a fluorine to a hydrogen and a hydroxyl group [2], 3-fluorooxindoles are potential mimics of the corresponding oxindoles 2 and 3-hydroxyoxindoles 3 that are often found in natural products [3], biologically active compounds [4], and metabolites of indoles [5]. For example, BMS-204352 (MaxiPostTM, **4**) was reported to be effective for the treatment of stroke [6]. As a part of our studies on the design, synthesis, and biological evaluation of fluorine-containing bioactive compounds [7], we have been developing the oxidative fluorination of indoles with SelectfluorTM [1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate)] (5) [8] to obtain the corresponding 3-fluorooxindoles [9].

In our recent studies on the application of the above fluorination to N_b -acyl or -acyloxycarbonyl protected tryptamines [10], we noticed that this fluorination is drastically affected by the character of the N_b -amino group of tryptamines. In order to make this fluorination versatile, we focused on a class of N_s -

E-mail address: tfuji@pha.u-toyama.ac.jp (T. Fujiwara).

ABSTRACT

A practical procedure for the synthesis of 3-fluorooxindole derivatives having basic amine moieties was developed, which involves SelectfluorTM-mediated oxidative fluorination of *N*,*N*-dialkyltryptamines in the presence of Lewis acid. This procedure was applied to an antimigraine drug, rizatriptan, to afford the corresponding 3-fluorooxindole, which is a potential fluorine-containing drug candidate.

© 2011 Elsevier B.V. All rights reserved.

dialkyltryptamines **6** having the rather basic amino group. Compounds **6** are known to be effective ligands for serotonin receptors [11] and the corresponding 3-fluorooxindoles **7** are expected to be potential analogs for the putative oxindole-type metabolites of **6** and as drug candidates having enhanced, additional and/or altered biological activities. Herein, we report an efficient procedure for the synthesis of 3-fluorooxindoles **7** by direct, oxidative fluorination of **6** with **5** in the presence of Lewis acid.

2. Results and discussion

We first attempted fluorination of *N*,*N*-dimethyltryptamine (**6a**) as a model compound according to our procedure [9,10] which employs 3 equiv of **5** in MeCN/H₂O (1/1). However, unlike the fluorination of N_b -acyl or -acyloxycarbonyl protected tryptamines **8a**–c (Table 1, entries 1–3), only a trace amount of 3-fluorooxindole **7a** was obtained (Table 1, entry 4) together with a substantial amount of unidentified products. We then examined fluorination of **6a** in other solvents. Using MeOH/H₂O in place of MeCN/H₂O increased the yield to 13% (entry 5). Further improvement of the yield (24%) was observed when the reaction was performed in a 1/1 mixture of MeCN/MeOH (entry 6). Use of MeOH alone again produced **7a**, in low yield (7%) (entry 7). Interestingly, a trace amount of *N*-methyltryptamine **10** could be isolated under the conditions in entry 7.

Formation of the *N*-demethylated product **10** suggested that the dimethylamino group of **6a** can be oxidized by **5**. The mechanism of this oxidation would involve formation of the iminium ion **12** and carbinolamine **13** (Scheme 1, path A). Path B

^{*} Corresponding author. Fax: +81 76 434 5053.

^{0022-1139/\$ -} see front matter \circledcirc 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2010.12.014

Fig. 1. Structures of compounds 1-7.

would be an alternative possibility although we could not isolate aldehyde **16**. Actually, similar mechanisms have been proposed for the demethylation of tertiary methylamines using halogenating reagents [12] and heme enzymes [13].

To confirm these reaction pathways, we attempted to trap the intermediates **12** and **14** with a cyanide anion. Reaction of **6a** with **5** and sodium cyanide in MeOH at 0 °C for 30 min produced α -

Table 1

Fluorination of tryptamines **6a** and **8a-c** with SelectfluorTM (**5**).

aminonitriles **17** and **18** in 58% and 8% yields, respectively (Scheme 2), which strongly supports the oxidative pathways shown in Scheme 1. It should be noted that oxidation of tertiary amines is known to trigger various transformations including *N*-dealkylation, dimerization, deamination, etc. [14]. Thus, formation of the complex mixture in the reaction of **6a** with **5** is probably due to the high nucleophilicity of the dimethylamino group of **6a**.

With these results in mind, we attempted the fluorination of **6a** in the presence of acid so as to decrease the nucleophilicity of the dimethylamino group. Results are shown in Table 2. Fluorination of **6a** in the presence of 1.1 equiv of BF₃·MeOH in MeCN/MeOH (1/1) produced **7a** in 73% yield (entry 1). Use of a larger or smaller amount of BF₃·MeOH did not improve the results (entries 2 and 3). After screening several Lewis acids for further optimization (entries 4–7), the best result (96% yield) was obtained when the fluorination was carried out using 1.1 equiv of AlCl₃ (entry 4). Next, we examined the reaction in the presence of some Brønsted acids. Treatment of **6a** with 1.1 equiv of acetic acid or trifluoroacetic acid furnished 3-fluorooxindole **7a** in moderate yields (entries 8 and 9). We also attempted the fluorination using *N*,*N*-dimethyltryptamine hydrochloride salt (**6a** · HCl) as a substrate. However, the yields of **7a** did not meet our expectation (entries 10–12).

For scope and limitations we applied the newly developed procedure for other *N*,*N*-dialkyltryptamines **6b**–**h** having various acyclic and cyclic amino groups (Table 3). Fluorination of **6b–h**

Entry	Substrate	R^1	R ²	R ³	Solvent (ratio)	Product	Yield (%)
1	8a ^a	Ac	Н	CO ₂ Me	MeCN/H ₂ O (1/1)	9a	70
2	8 b ^b	Boc	Boc	CO ₂ Me	MeCN/H ₂ O (1/1)	9b	71
3	8 c ^c	Boc	Boc	Н	MeCN/H ₂ O (1/1)	9c	71 ^d
4	6a	Me	Me	Н	MeCN/H ₂ O (1/1)	7a	Trace
5	6a	Me	Me	Н	MeOH/H ₂ O (1/1)	7a	13
6	6a	Me	Me	Н	MeCN/MeOH (1/1)	7a	24
7	6a	Me	Me	Н	MeOH	7a	7 (13) ^e

^a Ref. [9].

^b Ref. [10a].

^c Ref. [10b].

^d Yields of the N_b-Boc diprotected fluorooxindole and the N_b-Boc monoprotected fluorooxindole are 20% and 51%, respectively.

^e Yield of the recovered starting material in parenthesis.

Scheme 1. Possible mechanism for oxidation of tertiary amine 6a mediated by 5.

Scheme 2. Trapping of the iminium ion intermediates using sodium cyanide.

Table 2

Fluorination of **6a** and its hydrochloride **6a** · HCl in the presence of various acids.

with **5**, in the presence of 1.1 equiv of AlCl₃, successfully produced the corresponding 3-fluorooxindoles **7b**–**h** in excellent yields (entries 1–7). Fluorination of **6i**–**k** having electron-donating and – withdrawing groups at the 5-position of indole ring also gave satisfactory results (entries 8–10). Thus, we have developed a practical oxidative fluorination of *N*,*N*-dialkyltryptamines **6** with broad applicability.

In order to investigate the effect of AlCl₃ on the fluorination, we performed a ¹H NMR spectroscopic investigation of **6a** in CD₃CN/

Table 3

Oxidative fluorination of various N,N-dialkyltryptamines **6b–k** with **5** in the presence of AlCl₃.

Fig. 2. ¹H NMR spectra of **6a** before and after addition of AlCl₃.

Scheme 3. Synthesis of 3-fluorooxindole 20 from rizatriptan (19).

 CD_3OD (1/1) at room temperature. The original *N*-Me signal of **6a** observed at 2.32 ppm shifted to lower field, appearing at 2.88, upon addition of 1 equiv of AlCl₃ (Fig. 2). This result suggested that the nucleophilicity of the dialkylamino group would be decreased by the coordination to AlCl₃ in the course of fluorination of **6a**. However, considering that similar low-field shift was observed by addition of 1 equiv of H₂SO₄, the nucleophilicity would be also decreased by protonation with the Lewis-acid-assisted Brønsted acid derived from MeOH and AlCl₃ [15].

Finally, we applied this new protocol to a tryptamine-based medicinal, rizatriptan (**19**), which is a potent agonist toward both serotonin $5-HT_{1B}$ and $5-HT_{1D}$ receptors, and is currently used for treatment for migraine headache [16]. Reaction of **19** with 3 equiv of **5** in the presence of 1.1 equiv of AlCl₃ in MeCN/MeOH (1/1) produced **20** in 75% yield (Scheme 3).

3. Conclusion

We have developed a facile procedure for the synthesis of 3-[2-(N,N-dialkylamino)ethyl]-3-fluorooxindoles **7** by direct oxidative fluorination of *N*,*N*-dialkyltryptamines **6** with SelectfluorTM (**5**) in the presence of Lewis acid. The new procedure will enable the synthesis of 3-fluorooxindole derivatives having basic amine moieties in only one step from the corresponding tryptamines. Enantiomer separation and biological evaluation of the obtained 3-fluorooxindoles are currently underway.

4. Experimental

4.1. General

Melting points were measured with a Yanaco micro melting point apparatus and are uncorrected. Spectroscopic measurements were carried out with the following instruments: IR spectra, JASCO FT/IR-460Plus; mass spectra (MS), JEOL JMS-GCmate II; high resolution mass spectra (HRMS), JEOL JMS-GCmate II; ¹H NMR spectra, JEOL ECX-400P (400 MHz) in CDCl₃ with TMS (=0.00 ppm) as an internal standard; ¹³C NMR spectra, JEOL ECX-400P (100 MHz) in CDCl₃ with CDCl₃ (=77.0 ppm) as an internal standard; ¹⁹F NMR spectra, JEOL ECX-400P (376 MHz) in CDCl₃ with CFCl₃ (=0.00 ppm) as an internal standard. Column chromatography and thin layer chromatography were performed on Merck 9385 silica gel 60 (0.040–0.063 mm) and on Merck 5715, respectively.

4.2. General procedure for the synthesis of 3-fluorooxindole derivatives 7 and 20 by the fluorination of tryptamines 6 and 19 with SelectfluorTM (5) in the presence of $AlCl_3$: 3-[2-(N,N-dimethylamino)ethyl]-3-fluorooxindole (7a)

To a stirred MeCN/MeOH (1/1, 5 ml) solution of **6a** (50 mg, 0.27 mmol) were added AlCl₃ (39 mg, 0.29 mmol) and SelectfluorTM(**5**)(282 mg, 0.80 mmol) at 0 °C. The mixture was stirred for 30 min at room temperature. Concentration of the mixture gave a residue, which was purified by silica gel column chromatography (eluent: $CHCl_3/MeOH/NH_4OH = 93/7/0.5$) to give 3-fluorooxindole **7a** (57 mg, 96%) as a pale yellow oil: IR (neat) v 2952 (NH), 1735 (C=O) cm⁻¹; ¹H NMR δ 2.14 (6H, s), 2.25–2.36 (3H, m), 2.48 (1H, m), 6.91 (1H, d, J = 7.8 Hz), 7.08 (1H, t, J = 7.8 Hz), 7.32 (1H, tt, *J* = 7.8, 1.8 Hz), 7.38 (1H, dd, *J* = 7.8, 1.8 Hz), 9.18 (1H, brs); ¹³C NMR δ 32.7 (d, J = 27.8 Hz), 45.1, 53.0 (d, J = 7.7 Hz), 93.1 (d, J = 185.0 Hz), 110.6 (d, J = 1.9 Hz), 123.0 (d, J = 2.9 Hz), 124.9 (d, J = 1.9 Hz), 125.9 (d, J = 18.2 Hz), 131.2 (d, J = 3.8 Hz), 141.8 (d, J = 5.8 Hz), 174.9 (d, J = 21.1 Hz); ¹⁹F NMR δ -155.74 (1F, dd, J = 13.0, 10.8 Hz); MS (EI) m/z: 222 (M⁺), 202 (M⁺-HF), 187 (M⁺-HF-CH₃); HRMS (EI) calcd for C₁₂H₁₅FN₂O (M⁺): 222.1168; found 222.1147.

4.2.1. 3-[2-(N,N-Diethylamino)ethyl]-3-fluorooxindole (7b)

Yield: 90%; colorless oil; IR (neat) ν 3208 (NH), 1737 (C=O) cm⁻¹; ¹H NMR δ 0.84 (6H, t, *J* = 7.3 Hz), 2.22–2.37 (3H, m), 2.41–2.58 (5H, m), 6.89 (1H, d, *J* = 7.8 Hz), 7.08 (1H, t, *J* = 7.8 Hz), 7.32 (1H, tt, *J* = 7.8, 1.8 Hz), 7.38 (1H, dd, *J* = 7.8, 1.8 Hz), 8.30 (1H, brs); ¹³C NMR δ 11.1, 31.5 (d, *J* = 26.8 Hz), 46.4, 46.6 (d, *J* = 8.6 Hz), 93.3 (d, *J* = 183.1 Hz), 110.5, 123.0 (d, *J* = 2.9 Hz), 125.0 (d, *J* = 1.9 Hz), 125.9 (d, *J* = 18.2 Hz), 131.2 (d, *J* = 2.9 Hz), 141.8 (d, *J* = 5.8 Hz), 174.5 (d, *J* = 21.1 Hz); ¹⁹F NMR δ –153.70 (1F, brs); MS (EI) *m/z*: 250 (M⁺), 235 (M⁺-CH₃), 230 (M⁺-HF), 201 (M⁺-HF-C₂H₅); HRMS (EI) calcd for C₁₄H₁₉FN₂O (M⁺): 250.1481; found 250.1471.

4.2.2. 3-[2-(N,N-Diisopropylamino)ethyl]-3-fluorooxindole (7c)

Yield: 98%; pale yellow solid; mp 119–122 °C; IR (KBr) ν 3170 (NH), 1730 (C=O) cm⁻¹; ¹H NMR δ 0.84 (6H, d, *J* = 6.4 Hz), 0.89 (6H, d, *J* = 6.9 Hz), 2.26 (1H, m), 2.41–2.52 (3H, m), 2.96 (2H, sept, *J* = 6.4 Hz), 6.93 (1H, d, *J* = 7.8 Hz), 7.10 (1H, t, *J* = 7.8 Hz), 7.32 (1H, tt, *J* = 7.8, 1.8 Hz), 7.39 (1H, dd, *J* = 7.8, 1.8 Hz), 8.91 (1H, brs); ¹³C NMR δ 19.8, 20.7, 35.6 (d, *J* = 25.9 Hz), 38.9 (d, *J* = 9.6 Hz), 48.1, 93.3 (d, *J* = 184.0 Hz), 110.8 (d, *J* = 1.9 Hz), 123.0 (d, *J* = 2.9 Hz), 124.9, 126.1 (d, *J* = 18.2 Hz), 131.1 (d, *J* = 3.8 Hz), 141.7 (d, *J* = 5.8 Hz), 175.2 (d, *J* = 21.1 Hz); ¹⁹F NMR δ –153.65 (1F, brs); MS (EI) *m/z*: 278 (M⁺), 263 (M⁺-CH₃), 258 (M⁺-HF), 215 (M⁺-HF-C₃H₇); HRMS (EI) calcd for C₁₆H₂₃FN₂O (M⁺): 278.1794; found 278.1788.

4.2.3. 3-(2-Pyrrolidinoethyl)-3-fluorooxindole (7d)

Yield: 98%; pale yellow oil; IR (neat) ν 3210 (NH), 1738 (C=O) cm⁻¹; ¹H NMR δ 1.65–1.73 (4H, m), 2.31–2.42 (3H, m), 2.44–2.58 (5H, m), 6.91 (1H, d, *J* = 7.8 Hz), 7.07 (1H, t, *J* = 7.8 Hz), 7.31 (1H, tt, *J* = 7.8, 1.4 Hz), 7.38 (1H, dd, *J* = 7.8, 1.4 Hz), 9.21 (1H, brs); ¹³C NMR δ 23.4, 34.0 (d, *J* = 27.8 Hz), 49.5 (d, *J* = 8.6 Hz), 53.8, 93.2 (d, *J* = 185.0 Hz), 110.6 (d, *J* = 1.9 Hz), 122.9 (d, *J* = 1.9 Hz), 124.9, 126.0 (d, *J* = 18.2 Hz), 131.1 (d, *J* = 2.9 Hz), 141.8 (d, *J* = 5.8 Hz), 175.1 (d, *J* = 21.1 Hz); ¹⁹F NMR δ –155.65 (1F, dd, *J* = 11.7, 10.3 Hz); MS (EI) *m/z*: 248 (M⁺), 228 (M⁺–HF); HRMS (EI) calcd for C₁₄H₁₇FN₂O (M⁺): 248.1325; found 248.1316.

4.2.4. 3-(2-Piperidinoethyl)-3-fluorooxindole (7e)

Yield: 99%; pale yellow oil; IR (neat) ν 3063 (NH), 1733 (C=O) cm⁻¹; ¹H NMR δ 1.28–1.34 (2H, m), 1.40–1.46 (4H, m), 2.04–2.09 (2H, m), 2.21–2.35 (5H, m), 2.59 (1H, ddt, *J* = 20.8, 13.0, 4.7 Hz), 6.92 (1H, d, *J* = 7.8 Hz), 7.07 (1H, t, *J* = 7.8 Hz), 7.31 (1H, tt, *J* = 7.8, 1.4 Hz), 7.36 (1H, dd, *J* = 7.8, 1.4 Hz), 9.05 (1H, brs); ¹³C NMR δ 24.1, 25.5, 31.9 (d, *J* = 26.8 Hz), 52.8 (d, *J* = 9.6 Hz), 54.3, 93.6 (d, *J* = 183.1 Hz), 110.5 (d, *J* = 1.9 Hz), 122.8 (d, *J* = 2.9 Hz), 124.9, 125.9 (d, *J* = 18.2 Hz), 131.1 (d, *J* = 2.9 Hz), 142.0 (d, *J* = 4.8 Hz), 175.1 (d, *J* = 21.1 Hz); ¹⁹F NMR δ –154.37 (1F, brs); MS (EI) *m/z*: 262 (M⁺), 242 (M⁺–HF); HRMS (EI) calcd for C₁₅H₁₉FN₂O (M⁺): 262.1481; found 262.1466.

4.2.5. 3-[2-(N-Ethyl-N-methylamino)ethyl]-3-fluorooxindole (7f)

Yield: 92%; pale yellow oil; IR (neat) ν 3207 (NH), 1739 (C=O) cm⁻¹; ¹H NMR δ 0.87 (3H, t, *J* = 7.3 Hz), 2.11 (3H, s), 2.18–2.42 (5H, m), 2.53 (1H, m), 6.91 (1H, d, *J* = 7.8 Hz), 7.08 (1H, t, *J* = 7.8 Hz), 7.32 (1H, tt, *J* = 7.8, 1.4 Hz), 7.38 (1H, dd, *J* = 7.8, 1.4 Hz), 9.06 (1H, brs); ¹³C NMR δ 11.7, 32.1 (d, *J* = 26.8 Hz), 41.1, 50.8 (d, *J* = 8.6 Hz), 51.2, 93.4 (d, *J* = 184.0 Hz), 110.7, 122.9 (d, *J* = 2.9 Hz), 125.0, 125.9 (d, *J* = 18.2 Hz), 131.2 (d, *J* = 2.9 Hz), 142.0 (d, *J* = 5.8 Hz), 175.1 (d, *J* = 21.1 Hz); ¹⁹F NMR δ –154.82 (1F, t, *J* = 12.4 Hz); MS (EI) *m/z*: 236 (M⁺), 221 (M⁺-CH₃), 216 (M⁺-HF), 187 (M⁺-HF-C₂H₅); HRMS (EI) calcd for C₁₃H₁₇FN₂O (M⁺): 236.1325; found 236.1323.

4.2.6. 3-[2-(N-Methyl-N-propylamino)ethyl]-3-fluorooxindole (7g)

Yield: 93%; pale brown oil; IR (neat) ν 3208 (NH), 1739 (C=O) cm⁻¹; ¹H NMR δ 0.79 (3H, t, *J* = 7.3 Hz), 1.31 (2H, sex, *J* = 7.3 Hz), 2.10–2.57 (6H, m), 2.13 (3H, s), 6.91 (1H, d, *J* = 7.8 Hz), 7.07 (1H, t, *J* = 7.8 Hz), 7.31 (1H, tt, *J* = 7.8, 1.4 Hz), 7.37 (1H, dd, *J* = 7.8, 1.4 Hz), 9.25 (1H, brs); ¹³C NMR δ 11.7, 19.9, 32.0 (d, *J* = 26.8 Hz), 41.5, 51.3 (d, *J* = 8.6 Hz), 59.6, 93.2 (d, *J* = 184.0 Hz), 110.6, 123.0 (d, *J* = 2.9 Hz), 124.9, 125.9 (d, *J* = 18.2 Hz), 131.2 (d, *J* = 3.8 Hz), 141.8 (d, *J* = 5.8 Hz), 174.8 (d, *J* = 21.1 Hz); ¹⁹F NMR δ –155.05 (1F, brs); MS (EI) *m/z*: 250 (M⁺), 230 (M⁺–HF), 221 (M⁺–C₂H₅), 201 (M⁺–HF–C₂H₅), 187 (M⁺–HF–C₃H₇); HRMS (EI) calcd for C₁₄H₁₉FN₂O (M⁺): 250.1481; found 250.1475.

4.2.7. 3-[2-(N-Benzyl-N-methylamino)ethyl]-3-fluorooxindole (7h)

Yield: 90%; colorless oil; IR (neat) ν 3418 (NH), 1733 (C=O) cm⁻¹; ¹H NMR δ 2.08 (3H, s), 2.32–2.63 (4H, m), 3.34 (1H, d, *J* = 13.3 Hz), 3.40 (1H, d, *J* = 13.3 Hz), 6.88 (1H, d, *J* = 7.8 Hz), 7.05 (1H, t, *J* = 7.8 Hz), 7.15–7.25 (5H, m), 7.29 (1H, tt, *J* = 7.8, 1.4 Hz), 7.34 (1H, dd, *J* = 7.8, 1.8 Hz), 8.83 (1H, brs); ¹³C NMR δ 32.2 (d, *J* = 27.8 Hz), 41.5, 51.4 (d, *J* = 8.6 Hz), 62.3, 93.2 (d, *J* = 185.0 Hz), 110.6 (d, *J* = 1.9 Hz), 123.0 (d, *J* = 2.9 Hz), 125.0, 125.9 (d, *J* = 18.2 Hz), 126.9, 128.1, 128.9, 131.1 (d, *J* = 2.9 Hz), 138.3, 141.5 (d, *J* = 5.8 Hz), 174.7 (d, *J* = 21.1 Hz); ¹⁹F NMR δ –154.37 (1F, brs); MS (EI) *m/z*: 298 (M⁺), 283 (M⁺-CH₃), 278 (M⁺-HF), 207 (M⁺-C₇H₇), 187 (M⁺-HF-C₇H₇); HRMS (EI) calcd for C₁₈H₁₉FN₂O (M⁺): 298.1481; found 298.1481.

4.2.8. 3-[2-(N,N-Dimethylamino)ethyl]-3-fluoro-5-methyloxindole (7i)

Yield: 88%; pale brown oil; IR (neat) ν 2951 (NH), 1737 (C=O) cm⁻¹; ¹H NMR δ 2.15 (6H, s), 2.22–2.33 (3H, m), 2.33 (3H, s), 2.47 (1H, tt, *J* = 13.3, 5.1 Hz), 6.80 (1H, d, *J* = 7.8 Hz), 7.11 (1H, d, *J* = 7.8 Hz), 7.19 (1H, s), 9.05 (1H, brs); ¹³C NMR δ 21.0, 32.8 (d, *J* = 27.8 Hz), 45.1, 52.9 (d, *J* = 8.6 Hz), 93.3 (d, *J* = 185.0 Hz), 110.4, 125.5, 125.9 (d, *J* = 18.2 Hz), 131.5 (d, *J* = 2.9 Hz), 132.6 (d, *J* = 2.9 Hz), 139.2 (d, *J* = 5.8 Hz), 175.0 (d, *J* = 21.1 Hz); ¹⁹F NMR δ -155.45 (1F, dd, *J* = 13.3, 12.6 Hz); MS (EI) *m/z*: 236 (M⁺), 216 (M⁺-HF), 201 (M⁺-HF-CH₃); HRMS (EI) calcd for C₁₃H₁₇FN₂O (M⁺): 236.1325; found 236.1318.

4.2.9. 5-Bromo-3-[2-(N,N-dimethylamino)ethyl]-3-fluorooxindole (7j)

Yield: 95%; pale yellow oil; IR (neat) ν 2953 (NH), 1742 (C=O) cm⁻¹; ¹H NMR δ 2.13 (6H, s), 2.21–2.36 (3H, m), 2.48 (1H, m), 6.81 (1H, dd, *J* = 8.2, 1.8 Hz), 7.45 (1H, dt, *J* = 8.2, 1.8 Hz), 7.50 (1H, t, *J* = 1.8 Hz); ¹³C NMR δ 32.6 (d, *J* = 26.8 Hz), 45.0, 52.9 (d, *J* = 7.7 Hz), 92.9 (d, *J* = 185.9 Hz), 112.2, 115.4 (d, *J* = 2.9 Hz), 127.8 (d, *J* = 18.2 Hz), 128.2, 134.0 (d, *J* = 2.9 Hz), 140.9 (d, *J* = 5.8 Hz), 174.4 (d, *J* = 21.1 Hz); ¹⁹F NMR δ –155.81 (1F, dd, *J* = 13.5, 11.7 Hz); MS (EI) *m/z*: 302 (M⁺+2), 300 (M⁺), 282 [(M⁺+2)-HF], 280 (M⁺-HF), 267 [(M⁺+2)-HF-CH₃], 265 (M⁺-HF-CH₃); HRMS (EI) calcd for C₁₂H₁₄BrFN₂O (M⁺): 300.0274; found 300.0273.

4.2.10. 5-Chloro-3-[2-(N,N-dimethylamino)ethyl]-3-fluorooxindole (7k)

Yield: 96%; pale yellow oil; IR (neat) ν 2949 (NH), 1740 (C=O) cm⁻¹; ¹H NMR δ 2.13 (6H, s), 2.21–2.35 (3H, m), 2.49 (1H, m), 6.85 (1H, dd, *J* = 8.2, 1.8 Hz), 7.30 (1H, dt, *J* = 8.2, 1.8 Hz), 7.36 (1H, t, *J* = 1.8 Hz), 9.29 (1H, brs); ¹³C NMR δ 32.6 (d, *J* = 26.8 Hz), 45.0, 52.9 (d, *J* = 8.6 Hz), 93.0 (d, *J* = 185.9 Hz), 111.7, 125.4, 127.5 (d, *J* = 18.2 Hz), 128.3 (d, *J* = 2.9 Hz), 131.1 (d, *J* = 3.8 Hz), 140.4 (d, *J* = 5.8 Hz), 174.5 (d, *J* = 21.1 Hz); ¹⁹F NMR δ –155.92 (1F, dd, *J* = 13.5, 10.3 Hz); MS (EI) *m/z*: 258 (M⁺+2), 256 (M⁺), 238 [(M⁺+2)-HF], 236 (M⁺-HF), 223 [(M⁺+2)-HF-CH₃], 221 (M⁺-HF-CH₃); HRMS (EI) calcd for C₁₂H₁₄CIFN₂O (M⁺): 256.0779; found 256.0764.

4.2.11. 3-[2-(N,N-Dimethylamino)ethyl]-3-fluoro-5-[(1,2,4-triazol-1-yl)methyl]oxindole (20)

Yield: 75%; pale yellow oil; IR (neat) ν 3119 (NH), 1737 (C=O) cm⁻¹; ¹H NMR δ 2.08 (6H, s), 2.19–2.30 (3H, m), 2.48 (1H, m), 6.88 (1H, d, *J* = 7.8 Hz), 7.25 (1H, dt, *J* = 7.8, 1.8 Hz), 7.34 (1H, t, *J* = 1.8 Hz), 7.98 (1H, s), 8.10 (1H, s), 8.28 (1H, brs); ¹³C NMR δ 32.6 (d, *J* = 26.8 Hz), 45.0, 53.0 (d, *J* = 7.7 Hz), 53.1, 92.7 (d, *J* = 185.9 Hz), 110.8, 125.0, 126.8 (d, *J* = 18.2 Hz), 129.4 (d, *J* = 2.9 Hz), 131.2 (d, *J* = 2.9 Hz), 142.1 (d, *J* = 5.8 Hz), 143.0, 152.3, 174.2 (d, *J* = 21.1 Hz); ¹⁹F NMR δ –155.21 (1F, t, *J* = 12.4 Hz); MS (EI) *m/z*: 303 (M⁺), 283 (M⁺-HF), 268 (M⁺-HF-CH₃); HRMS (EI) calcd for C₁₅H₁₈FN₅O (M⁺): 303.1495; found 303.1491.

References

- (a) K. Müller, C. Faeh, F. Diederich, Science 317 (2007) 1881–1886;
 (b) S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 37 (2008) 320–330.
- [2] J.P. Bégué, D. Bonnet-Delpon, Bioorganic and Medicinal Chemistry of Fluorine, John Wiley & Sons, Inc., New York, 2008.
- [3] (a) S. Hibino, T. Choshi, Nat. Prod. Rep. 18 (2001) 66-87;
- (b) M. Somei, F. Yamada, Nat. Prod. Rep. 20 (2003) 216-242.
- [4] For selected examples: (a) T. Tokunaga, W.E. Hume, J. Nagamine, T. Kawamura, M. Taiji, R. Nagata, Bioorg. Med. Chem. Lett. 15 (2005) 1789–1792.

(b) G.D. Zhu, V.B. Gandhi, J. Gong, Y. Luo, X. Liu, Y. Shi, R. Guan, S.R. Magnone, V. Klinghofer, E.F. Johnson, J. Bouska, A. Shoemaker, A. Oleksijew, K. Jarvis, C. Park, R.D. Jong, T. Oltersdorf, Q. Li, S.H. Rosenberg, V.L. Giranda, Bioorg. Med. Chem. Lett. 16 (2006) 3424–3429;

(c) L. Buckbinder, D.T. Crawford, H. Qi, H.Z. Ke, L.M. Olson, K.R. Long, P.C. Bonnette, A.P. Baumann, J.E. Hambor, W.A. Grasser III, L.C. Pan, T.A. Owen, M.J. Luzzio, C.A. Hulford, D.F. Gebhard, V.M. Paralkar, H.A. Simmons, J.C. Kath, W.G. Roberts, S.L. Smock, A. Guzman-Perez, T.A. Brown, M. Li, Proc. Natl. Acad. Sci. U.S.A. 104 (2007) 10619–10624.

- [5] For selected examples: (a) Z. Yang, M.Z. Wrona, G. Dryhurst, J. Neurochem. 68 (1997) 1929–1941.
 - (b) K.W. Skordos, G.L. Skiles, J.D. Laycock, D.L. Lanza, G.S. Yost, Chem. Res. Toxicol. 11 (1998) 741-749;
 - (c) E.M.J. Gillam, L.M. Notley, H. Cai, J.J. De Voss, F.P. Guengerich, Biochemistry 39 (2000) 13817–13824;
- (d) R.E. Staub, B. Onisko, L.F. Bjeldanes, Chem. Res. Toxicol. 19 (2006) 436–442.
 [6] P. Hewawasam, V.K. Gribkoff, Y. Pendri, S.I. Dworetzky, N.A. Meanwell, E. Martinez, C.G. Boissard, D.J. Post-Munson, J.T. Trojnacki, K. Yeleswaram, L.M. Pajor, J. Knipe, Q. Gao, R. Perrone, J.E. Starrett Jr., Bioorg. Med. Chem. Lett. 12 (2002) 1023–1026.
- [7] (a) Y. Takeuchi, T. Shiragami, K. Kimura, E. Suzuki, N. Shibata, Org. Lett. 1 (1999) 1571–1573;

(b) Y. Takeuchi, N. Shibata, E. Suzuki, Y. limura, T. Kosasa, T. Yamanishi, H. Sugimoto, PCT Int. Appl. WO 2002020482; Chem. Abstr. 136 (2002) 247496; (c) H. Fujisawa, T. Fujiwara, Y. Takeuchi, K. Omata, Chem. Pharm. Bull. 53 (2005) 524–528:

(d) Y. Takeuchi, H. Fujisawa, T. Fujiwara, M. Matsuura, H. Komatsu, S. Ueno, T. Matsuzaki, Chem. Pharm. Bull. 53 (2005) 1062–1064;

(e) Y. Takeuchi, T. Fujiwara, T. Saito, US 20090171093; Chem. Abstr., 151, 123831, 2009.

- [8] (a) S.D. Taylor, C.C. Kotoris, G. Hum, Tetrahedron 55 (1999) 12431-12477;
- (b) R.P. Singh, J.M. Shreeve, Acc. Chem. Res. 37 (2004) 31-44.
- [9] Y. Takeuchi, T. Tarui, N. Shibata, Org. Lett. 2 (2000) 639-642.
- [10] (a) T. Fujiwara, B. Yin, M. Jin, K.L. Kirk, Y. Takeuchi, J. Fluorine Chem. 129 (2008) 829-835;
- (b) T. Fujiwara, T. Seki, M. Miura, Y. Takeuchi, Heterocycles 79 (2009) 427–432.
 [11] For selected examples: (a) M. Dukat, C. Smith, K. Herrick-Davis, M. Teitler, R.A.
- Glennon, Bioorg. Med. Chem. 12 (2004) 2545–2552.
 (b) J. Holenz, R. Mercè, J.L. Díaz, X. Guitart, X. Codony, A. Dordal, G. Romero, A. Torrens, J. Mas, B. Andaluz, S. Hernández, X. Monroy, E. Sánchez, E. Hernández, R. Pérez, R. Cubí, O. Sanfeliu, H. Buschmann, J. Med. Chem. 48 (2005) 1781–1795;
 (c) H. Sard, G. Kumaran, C. Morency, B.L. Roth, B.A. Toth, P. He, L. Shuster, Bioorg. Med. Chem. Lett. 15 (2005) 4555–4559;
 (d) M. Dukat, P.D. Mosier, R. Kolanos, B.L. Roth, R.A. Glennon, J. Med. Chem. 51

(d) M. Dukat, P.D. Mosier, K. Kolanos, B.L. Roth, R.A. Glennon, J. Med. Chem. 51 (2008) 603–611.

- [12] (a) K. Acosta, J.W. Cessac, P.N. Rao, H.K. Kim, J. Chem. Soc., Chem. Commun. (1994) 1985–1986;
 (b) P.A. Lartey, H.N. Nellans, R. Faghih, A. Petersen, C.M. Edwards, L. Freiberg, S. Quigley, K. Marsh, LL. Klein, J.J. Plattner, J. Med. Chem. 38 (1995) 1793–1798;
 (c) H.G. Stenmark, A. Brazzale, Z. Ma, J. Org. Chem. 65 (2000) 3875–3876;
 (d) T. Katoh, T. Watanabe, M. Nishitani, M. Ozeki, T. Kajimoto, M. Node, Tetrahedron Lett. 49 (2008) 598–600.
- [13] (a) F.P. Guengerich, C.H. Yun, T.L. Macdonald, J. Biol. Chem. 271 (1996) 27321– 27329;
 - (b) Y. Goto, Y. Watanabe, S. Fukuzumi, J.P. Jones, J.P. Dinnocenzo, J. Am. Chem. Soc. 120 (1998) 10762–10763.
- [14] (a) X.L. Shen, F.P. Wang, Chem. Pharm. Bull. 52 (2004) 1095-1097;

(b) H. Petride, O. Costan, C. Drăghici, C. Florea, A. Petride, ARKIVOC (2005) 18–32;
 (c) P.R. Graupner, J. Martynow, P.B. Anzeveno, J. Org. Chem. 70 (2005) 2154–2160.

- [15] H. Yamamoto, K. Futatsugi, Angew. Chem. Int. Ed. 44 (2005) 1924-1942.
- [16] R.J. Hargreaves, C.R. Lines, A.M. Rapoport, T.W. Ho, F.D. Sheftell, Headache 49 (2009) S3–S20.